Can IT Standards Facilitate Innovation?

ideaIT professionals continue to debate the benefits of standardization versus the benefits of innovation, and the potential of standards inhibiting engineer and software developer ability to develop creative solutions to business opportunities and challenges.  At the Open Group Conference in San Diego last week (3~5 February) the topic of  standards and innovation popped up not only in presentations, but also in sidebar conversations surrounding the conference venue.

In his presentation SOA4BT (Service-Oriented Architecture for Business Technology) – From Business Services to Realization,   Nikhil Kumar noted that with rigid standards there is “always a risk of service units creating barriers to business units.”  The idea is that service and IT organizations must align their intended use of standards with the needs of the business units.   Kumar further described a traditional cycle where:

  • Enterprise drivers establish ->
  • Business derived technical drivers, which encounter ->
  • Legacy and traditional constraints, which result in ->
  • “Business Required” technologies and technology (enabled) SOAs

Going through this cycle does not require a process with too much overhead, it is simply a requirement for ensuring the use of a standard, or standard business architecture framework  drive the business services groups (IT) into the business unit circle.  While IT is the source of many innovative ideas and deployments of emerging technologies, the business units are the ultimate benefactors of innovation, allowing the unit to address and respond to rapidly emerging opportunities or market requirements.

Standards come in a lot of shapes and sizes.  One standard may be a national or international standard, such as ISO 20000 (service delivery), NIST 800-53 (security), or BICSI 002-2011 (data center design and operations).  Standards may also be internal within an organization or industry, such as standardizing data bases, applications, data formats, and virtual appliances within a cloud computing environment.

In his presentation “The Implications of EA in New Audit Guidelines (COBIT5), Robert Weisman noted there are now more than 36,500 TOGAF (The Open Group Architecture Framework) certified practitioners worldwide, with more than 60 certified training organizations providing TOGAF certifications.  According to ITSMinfo.com, just in 2012 there were more than 263,000 ITIL Foundation certifications granted (for service delivery), and ISACA notes there were more than 4000 COBIT 5 certifications granted (for IT planning, implementation, and governance) in the same period.

With a growing number of organizations either requiring, or providing training in enterprise architecture, service delivery, or governance disciplines, it is becoming clear that organizations need to have a more structured method of designing more effective service-orientation within their IT systems, both for operational efficiency, and also for facilitating more effective decision support systems and performance reporting.  The standards and frameworks attempt to provide greater structure to both business and IT when designing technology toolsets and solutions for business requirements.

So use of standards becomes very effective for providing structure and guidelines for IT toolset and solutions development.  Now to address the issue of innovation, several ideas are important to consider, including:

  • Developing an organizational culture of shared vision, values, and goals
  • Developing a standardized toolkit of virtual appliances, interfaces, platforms, and applications
  • Accepting a need for continual review of existing tools, improvement of tools to match business requirements, and allow for further development and consideration when existing utilities and tools are not sufficient or adequate to task

Once an aligned vision of business goals is available and achieved, a standard toolset published, and IT and business units are better integrated as teams, additional benefits may become apparent.

  • Duplication of effort is reduced with the availability of standardized IT tools
  • Incompatible or non-interoperable organizational data is either reduced or eliminated
  • More development effort is applied to developing new solutions, rather than developing basic or standardized components
  • Investors will have much more confidence in management’s ability to not only make the best use of existing resources and budgets, but also the organization’s ability to exploit new business opportunities
  • Focusing on a standard set of utilities and applications, such as database software, will not only improve interoperability, but also enhance the organization’s ability to influence vendor service-level agreements and support agreements, as well as reduce cost with volume purchasing

Rather than view standards as an inhibitor, or barrier to innovation, business units and other organizational stakeholders should view standards as a method of not only facilitating SOAs and interoperability, but also as a way of relieving developers from the burden of constantly recreating common sets and libraries of underlying IT utilities.  If developers are free to focus their efforts on pure solutions development and responding to emerging opportunities, and rely on both technical and process standardization to guide their efforts, the result will greatly enhance an organization’s ability to be agile, while still ensuring a higher level of security, interoperability, systems portability, and innovation.

OSS Development for the Modern Data Center

Modern Data Centers are very complex environments.  Data center operators must have visibility into a wide range of integrated data bases, applications, and performance indicators to effectively understand and manage their operations and activities.

While each data center is different, all Data Centers share some common systems and common characteristics, including:

  • Facility inventories
  • Provisioning and customer fulfillment processes
  • Maintenance activities (including computerized maintenance management systems <CMMS>)
  • Monitoring
  • Customer management (including CRM, order management, etc.)
  • Trouble management
  • Customer portals
  • Security Systems (physical access entry/control and logical systems management)
  • Billing and Accounting Systems
  • Service usage records (power, bandwidth, remote hands, etc.)
  • Decision support system and performance management integration
  • Standards for data and applications
  • Staffing and activities-based management
  • Scheduling /calendar
  • etc…

Unfortunately, in many cases, the above systems are either done manually, have no standards, and had no automation or integration interconnecting individual back office components.  This also includes many communication companies and telecommunications carriers which previously either adhered, or claimed to adhere to Bellcore data and operations standards.

In some cases, the lack of integration is due to many mergers and acquisitions of companies which have unique, or non standard back office systems.  The result is difficulty in cross provisioning, billing, integrated customer management systems, and accounting – the day to day operations of a data center.

Modern data centers must have a high level of automation.  In particular, if a data center operator owns multiple facilities, it becomes very difficult to have a common look and feel or high level of integration allowing the company to offer a standardized product to their markets and customers.

Operational support systems or OSS, traditionally have four main components which include:

  • Support for process automation
  • Collection and storage for a wide variety of operational data
  • The use of standardized data structures and applications
  • And supporting technologies

With most commercial or public colocation and Data Centers customers and tenants organizations represent many different industries, products, and services.  Some large colocation centers may have several hundred individual customers.  Other data centers may have larger customers such as cloud service providers, content delivery networks, and other hosting companies.  While single large customers may be few, their internal hosted or virtual customers may also be at the scale of hundreds, or even thousands of individual customers.

To effectively support their customers Data Centers must have comprehensive OSS capabilities.  Given the large number of processes, data sources, and user requirements, the OSS should be designed and developed using a standard architecture and framework which will ensure OSS integration and interoperability.

OSS Components We have conducted numerous Interoperability Readiness surveys with both governments and private sector (commercial) data center operators during the past five years.  In more than 80% of surveys processes such as inventory management have been built within simple spreadsheets.  Provisioning of inventory items was normally a manual process conducted via e-mail or in some cases paper forms.

Provisioning, a manual process, resulted in some cases of double booked or double sold inventory items, as well as inefficient orders for adding additional customer-facing inventory or build out of additional data center space.

The problem often further compounded into additional problems such as missing customer billing cycles, accounting shortfalls, and management or monitoring system errors.

The new data center, including virtual data centers within cloud service providers, must develop better OSS tools and systems to accommodate the rapidly changing need for elasticity and agility in ICT systems.  This includes having as single window for all required items within the OSS.

Preparing an OSS architecture, based on a service-oriented architecture (SOA), should include use of ICT-friendly frameworks and guidance such as TOGAF and/or ITIL to ensure all visions and designs fully acknowledge and embrace the needs of each organization’s business owners and customers, and follow a comprehensive and structured development process to ensure those objectives are delivered.

Use of standard databases, APIs, service busses, security, and establishing a high level of governance to ensure a “standards and interoperability first” policy for all data center IT will allow all systems to communicate, share, reuse, and ultimately provide automated, single source data resources into all data center, management, accounting, and customer activities.

Any manual transfer of data between offices, applications, or systems must be prevented, preferring to integrate inventory, data collections and records, processes, and performance management indicators into a fully integrated and interoperable environment.  A basic rule of thought might be that if a human being has touched data, then the data likely has been either corrupted or its integrity may be brought into question.

Looking ahead to the next generation of data center services, stepping a bit higher up the customer service maturity continuum requires much higher levels of internal process and customer process automation.

Similar to NIST’s definition of cloud computing, stating the essential characteristics of cloud computing include “self-service provisioning,” “rapid elasticity,” ”measured services,” in addition to resource pooling and broadband access, it can be assumed that data center users of the future will need to order and fulfill services such as network interconnections, power, virtual space (or physical space), and other services through self-service, or on-demand ordering.

The OSS must strive to meet the following objectives:

  • Standardization
  • Interoperability
  • Reusable components and APIs
  • Data sharing

To accomplish this will require nearly all above mentioned characteristics of the OSS to have inventories in databases (not spreadsheets), process automation, and standards in data structure, APIs, and application interoperability.

And as the ultimate key success factor, management DSS will finally have potential for development of true dashboard for performance management, data analytics, and additional real-time tools for making effective organizational decisions.

Focusing on Cloud Portability and Interoperability

Cloud Computing has helped us understand both the opportunity, and the need, to decouple physical IT infrastructure from the requirements of business.  In theory cloud computing greatly enhances an organization’s ability to not only decommission inefficient data center resources, but even more importantly eases the process an organization needs to develop when moving to integration and service-orientation within supporting IT systems.

Current cloud computing standards, such as published by the US National Institute of Standards and Technology (NIST) have provided very good definitions, and solid reference architecture for understanding at a high level a vision of cloud computing.

image However these definitions, while good for addressing the vision of cloud computing, are not at a level of detail needed to really understand the potential impact of cloud computing within an existing organization, nor the potential of enabling data and systems resources to meet a need for interoperability of data in a 2020 or 2025 IT world.

The key to interoperability, and subsequent portability, is a clear set of standards.  The Internet emerged as a collaboration of academic, government, and private industry development which bypassed much of the normal technology vendor desire to create a proprietary product or service.  The cloud computing world, while having deep roots in mainframe computing, time-sharing, grid computing, and other web hosting services, was really thrust upon the IT community with little fanfare in the mid-2000s.

While NIST, the Open GRID Forum, OASIS, DMTF, and other organizations have developed some levels of standardization for virtualization and portability, the reality is applications, platforms, and infrastructure are still largely tightly coupled, restricting the ease most developers would need to accelerate higher levels of integration and interconnections of data and applications.

NIST’s Cloud Computing Standards Roadmap (SP 500-291 v2) states:

…the migration to cloud computing should enable various multiple cloud platforms seamless access between and among various cloud services, to optimize the cloud consumer expectations and experience.

Cloud interoperability allows seamless exchange and use of data and services among various cloud infrastructure offerings and to the the data and services exchanged to enable them to operate effectively together.”

Very easy to say, however the reality is, in particular with PaaS and SaaS libraries and services, that few fully interchangeable components exist, and any information sharing is a compromise in flexibility.

The Open Group, in their document “Cloud Computing Portability and Interoperability” simplifies the problem into a single statement:

“The cheaper and easier it is to integrate applications and systems, the closer you are getting to real interoperability.”

The alternative is of course an IT world that is restrained by proprietary interfaces, extending the pitfalls and dangers of vendor lock-in.

What Can We Do?

The first thing is, the cloud consumer world must make a stand and demand vendors produce services and applications based on interoperability and data portability standards.  No IT organization in the current IT maturity continuum should be procuring systems that do not support an open, industry-standard, service-oriented infrastructure, platform, and applications reference model (Open Group).

In addition to the need for interoperable data and services, the concept of portability is essential to developing, operating, and maintaining effective disaster management and continuity of operations procedures.  No IT infrastructure, platform, or application should be considered which does not allow and embrace portability.  This includes NIST’s guidance stating:

“Cloud portability allows two or more kinds of cloud infrastructures to seamlessly use data and services from one cloud system and be used for other cloud systems.”

The bottom line for all CIOs, CTOs, and IT managers – accept the need for service-orientation within all existing or planned IT services and systems.  Embrace Service-Oriented Architectures, Enterprise Architecture, and at all costs the potential for vendor lock-in when considering any level of infrastructure or service.

Standards are the key to portability and interoperability, and IT organizations have the power to continue forcing adoption and compliance with standards by all vendors.  Do not accept anything which does not fully support the need for data interoperability.

Now that We Have Adopted IaaS…

Providing guidance or consulting to organizations on cloud computing topics can be really easy, or really tough.  In the past most of the initial engagement was dedicated to training and building awareness with your customer.  The next step was finding a high value, low risk application or service that could be moved to Infrastructure as a Service (IaaS) to solve an immediate problem, normally associated with disaster recovery or data backups.

Service Buss and DSS As the years have continued, dynamics changed.  On one hand, IT professionals and CIOs began to establish better knowledge of what virtualization, cloud computing, and outsourcing could do for their organization.  CFOs became aware of the financial potential of virtualization and cloud computing, and a healthy dialog between IT, operations, business units, and the CFO.

The “Internet Age” has also driven global competition down to the local level, forcing nearly all organizations to respond more rapidly to business opportunities.  If a business unit cannot rapidly respond to the opportunity, which may require product and service development, the opportunity can be lost far more quickly than in the past.

In the old days, procurement of IT resources could require a fairly lengthy cycle.  In the Internet Age, if an IT procurement cycle takes > 6 months, there is probably little chance to effectively meet the greatly shortened development cycle competitors in other continents – or across the street may be able to fulfill.

With IaaS the procurement cycle of IT resources can be within minutes, allowing business units to spend far more time developing products, services, and solutions, rather than dealing with the frustration of being powerless to respond to short window opportunities.  This is of course addressing the essential cloud characteristics of Rapid Elasticity and On-Demand Self-Service.

In addition to on-demand and elastic resources, IaaS has offered nearly all organizations the option of moving IT resources into either public or private cloud infrastructure.  This has the benefit of allowing data center decommissioning, and re-commissioning into a virtual environment.  The cost of operating data centers, maintaining data centers and IT equipment, and staffing data centers vs. outsourcing that infrastructure into a cloud is very interesting to CFOs, and a major justification for replacing physical data centers with virtual data centers.

The second dynamic, in addition to greater professional knowledge and awareness of cloud computing, is the fact we are starting to recruit cloud-aware employees graduating from universities and making their first steps into careers and workforce.  With these “cloud savvy” young people comes deep experience with interoperable data, social media, big data, data analytics, and an intellectual separation between access devices and underlying IT infrastructure.

The Next Step in Cloud Evolution

OK, so we all are generally aware of the components of IaaS, Platform as a Service (PaaS), and Software as a Service (SaaS).  Let’s have a quick review of some standout features supported or enabled by cloud:

  • Increased standardization of applications
  • Increased standardization of data bases
  • Federation of security systems (Authentication and Authorization)
  • Service busses
  • Development of other common applications (GIS, collaboration, etc.)
  • Transparency of underlying hardware

Now let’s consider the need for better, real-time, accurate decision support systems (DSS).  Within any organization the value of a DSS is dependent on data integrity, data access (open data within/without an organization), and single-source data.

Frameworks for developing an effective DSS are certainly available, whether it is TOGAF, the US Federal Enterprise Architecture Framework (FEAF), interoperability frameworks, and service-oriented architectures (SOA).  All are fully compatible with the tools made available within the basic cloud service delivery models (IaaS, PaaS, SaaS).

The Open Group (same organization which developed TOGAF) has responded with their model of a Cloud Computing Service Oriented Infrastructure (SOCCI) Framework.  The SOCCI is identified as the marriage of a Service-Oriented Infrastructure and cloud computing.  The SOCCI also incorporates aspects of TOGAF into the framework, which may drive more credibility into a SOCCI architectural development process.

The expected result of this effort is for existing organizations dealing with departmental “silos” of IT infrastructure, data, and applications, a level of interoperability and DSS development based on service-orientation, using a well-designed underlying cloud infrastructure.  This data sharing can be extended beyond the (virtual) firewall to others in an organization’s trading or governmental community, resulting in  DSS which will become closer and closer to an architecture vision based on the true value of data produced, or made available to an organization.

While we most certainly need IaaS, and the value of moving to virtual data centers is justified by itself, we will not truly benefit from the potential of cloud computing until we understand the potential of data produced and available to decision makers.

The opportunity will need a broad spectrum of contributors and participants with awareness and training in disciplines ranging from technical capabilities, to enterprise architecture, to service delivery, and governance acceptable to a cloud-enabled IT world.

For those who are eagerly consuming training and knowledge in the above skills and knowledge, the future is anything but cloudy.  For those who believe in status quo, let’s hope you are close to pension and retirement, as this is your future.

ICT Modernization Planning

ICT ModernizationThe current technology refresh cycle presents many opportunities, and challenges to both organizations and governments.  The potential of service-oriented architectures, interoperability, collaboration, and continuity of operations is an attractive outcome of technologies and business models available today.  The challenges are more related to business processes and human factors, both of which require organizational transformations to take best advantage of the collaborative environments enabled through use of cloud computing and access to broadband communications.

Gaining the most benefit from planning an interoperable environment for governments and organizations may be facilitated through use of business tools such as cloud computing.  Cloud computing and underlying technologies may create an operational environment supporting many strategic objectives being considered within government and private sector organizations.

Reaching target architectures and capabilities is not a single action, and will require a clear understanding of current “as-is” baseline capabilities, target requirements, the gaps or capabilities need to reach the target, and establishing a clear transitional plan to bring the organization from a starting “as-is” baseline to the target goal.

To most effectively reach that goal requires an understanding of the various contributing components within the transformational ecosystem.  In addition, planners must keep in mind the goal is not implementation of technologies, but rather consideration of technologies as needed to facilitate business and operations process visions and goals.

Interoperability and Enterprise Architecture

Information technology, particularly communications-enabled technology has enhanced business process, education, and the quality of life for millions around the world.  However, traditionally ICT has created silos of information which is rarely integrated or interoperable with other data systems or sources.

As the science of enterprise architecture development and modeling, service-oriented architectures, and interoperability frameworks continue to force the issue of data integration and reuse, ICT developers are looking to reinforce open standards allowing publication of external interfaces and application programming interfaces.

Cloud computing, a rapidly maturing framework for virtualization, standardized data, application, and interface structure technologies, offers a wealth of tools to support development of both integrated and interoperable ICT  resources within organizations, as well as among their trading, shared, or collaborative workflow community.

The Institute for Enterprise Architecture Development defines enterprise architecture (EA) as a “complete expression of the enterprise; a master plan which acts as a collaboration force between aspects of business planning such as goals, visions, strategies and governance principles; aspects of business operations such as business terms, organization structures, processes and data; aspects of automation such as information systems and databases; and the enabling technological infrastructure of the business such as computers, operating systems and networks”

ICT, including utilities such as cloud computing, should focus on supporting the holistic objectives of organizations implementing an EA.  Non-interoperable or shared data will generally have less value than reusable data, and will greatly increase systems reliability and data integrity.

Business Continuity and Disaster Recovery (BCDR)

Recent surveys of governments around the world indicate in most cases limited or no disaster management or continuity of operations planning.  The risk of losing critical national data resources due to natural or man-made disasters is high, and the ability for most governments maintain government and citizen services during a disaster is limited based on the amount of time (recovery time objective/RTO) required to restart government services, as well as the point of data restoral (recovery point objective /RPO).

In existing ICT environments, particularly those with organizational and data resource silos,  RTOs and RPOs can be extended to near indefinite if both a data backup plan, as well as systems and service restoral resource capacity is not present.  This is particularly acute if the processing environment includes legacy mainframe computer applications which do not have a mirrored recovery capacity available upon failure or loss of service due to disaster.

Cloud computing can provide a standards-based environment that fully supports near zero RTO/RPO requirements.  With the current limitation of cloud computing being based on Intel-compatible architectures, nearly any existing application or data source can be migrated into a virtual resource pool.   Once within the cloud computing Infrastructure as a Service (IaaS) environment, setting up distributed processing or backup capacity is relatively uncomplicated, assuming the environment has adequate broadband access to the end user and between processing facilities.

Cloud computing-enabled BCDR also opens opportunities for developing either PPPs, or considering the potential of outsourcing into public or commercially operated cloud computing compute, storage, and communications infrastructure.  Again, the main limitation being the requirement for portability between systems.

Transformation Readiness

ICT modernization will drive change within all organizations.  Transformational readiness is not a matter of technology, but a combination of factors including rapidly changing business models, the need for many-to-many real-time communications, flattening of organizational structures, and the continued entry of technology and communications savvy employees into the workforce.

The potential of outsourcing utility compute, storage, application, and communications will eliminate the need for much physical infrastructure, such as redundant or obsolete data centers and server closets.  Roles will change based on the expected shift from physical data centers and ICT support hardware to virtual models based on subscriptions and catalogs of reusable application and process artifacts.

A business model for accomplishing ICT modernization includes cloud computing, which relies on technologies such as server and storage resource virtualization, adding operational characteristics including on-demand resource provisioning to reduce the time needed to procure ICT resources needed to respond to emerging operational  or other business opportunities.

IT management and service operations move from a workstation environment to a user interface driven by SaaS.  The skills needed to drive ICT within the organization will need to change, becoming closer to the business, while reducing the need to manage complex individual workstations.

IT organizations will need to change, as organizations may elect to outsource most or all of their underlying physical data center resources to a cloud service provider, either in a public or private environment.  This could eliminate the need for some positions, while driving new staffing requirements in skills related to cloud resource provisioning, management, and development.

Business unit managers may be able to take advantage of other aspects of cloud computing, including access to on-demand compute, storage, and applications development resources.  This may increase their ability to quickly respond to rapidly changing market conditions and other emerging opportunities.   Business unit managers, product developers, and sales teams will need to become familiar with their new ICT support tools.  All positions from project managers to sales support will need to quickly acquire skills necessary to take advantage of these new tools.

The Role of Cloud Computing

Cloud computing is a business representation of a large number of underlying technologies.  Including virtualization, development environment, and hosted applications, cloud computing provides a framework for developing standardized service models, deployment models, and service delivery characteristics.

The US National Institute of Standards and Technology (NIST) provides a definition of cloud computing accepted throughout the ICT industry.

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort or service provider interaction.“

While organizations face decisions related to implementing challenges related to developing enterprise architectures and interoperability, cloud computing continues to rapidly develop as an environment with a rich set of compute, communication, development, standardization, and collaboration tools needed to meet organizational objectives.

Data security, including privacy, is different within a cloud computing environment, as the potential for data sharing is expanded among both internal and potentially external agencies.  Security concerns are expanded when questions of infrastructure multi-tenancy, network access to hosted applications (Software as a Service / SaaS), and governance of authentication and authorization raise questions on end user trust of the cloud provider.

A move to cloud computing is often associated with data center consolidation initiatives within both governments and large organizations.  Cloud delivery models, including Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) support the development of virtual data centers.

While it is clear long term target architectures for most organizations will be an environment with a single data system, in the short term it may be more important to decommission high risk server closets and unmanaged servers into a centralized, well-managed data center environment offering on-demand access to compute, storage, and network resources – as well as BCDR options.

Even at the most basic level of considering IaaS and PaaS as a replacement environment to physical infrastructure, the benefits to the organization may become quickly apparent.  If the organization establishes a “cloud first” policy to force consolidation of inefficient or high risk ICT resources, and that environment further aligns the organization through the use of standardized IT components, the ultimate goal of reaching interoperability or some level of data integration will become much easier, and in fact a natural evolution.

Nearly all major ICT-related hardware and software companies are re-engineering their product development to either drive cloud computing, or be cloud-aware.  Microsoft has released their Office 365 suite of online and hosted environments, as has Google with both PaaS and SaaS tools such as the Google Apps Engine and Google Docs.

The benefits of organizations considering a move to hosted environments, such as MS 365, are based on access to a rich set of applications and resources available on-demand, using a subscription model – rather than licensing model, offering a high level of standardization to developers and applications.

Users comfortable with standard office automation and productivity tools will find the same features in a SaaS environment, while still being relieved of individual software license costs, application maintenance, or potential loss of resources due to equipment failure or theft.  Hosted applications also allow a persistent state, collaborative real-time environment for multi-users requiring access to documents or projects.  Document management and single source data available for reuse by applications and other users, reporting, and performance management becomes routine, reducing the potential and threat of data corruption.

The shortfalls, particularly for governments, is that using a large commercial cloud infrastructure and service provider such as Microsoft  may require physically storing data in location outside of their home country, as well as forcing data into a multi-tenant environment which may not meet security requirements for organizations.

Cloud computing offers an additional major feature at the SaaS level that will benefit nearly all organizations transitioning to a mobile workforce.  SaaS by definition is platform independent.  Users access SaaS applications and underlying data via any device offering a network connection, and allowing access to an Internet-connected address through a browser.    The actual intelligence in an application is at the server or virtual server, and the user device is simply a dumb terminal displaying a portal, access point, or the results of a query or application executed through a command at the user screen.

Cloud computing continues to develop as a framework and toolset for meeting business objectives.  Cloud computing is well-suited to respond to rapidly changing business and organizational needs, as the characteristics of on-demand access to infrastructure resources, rapid elasticity, or the ability to provision and de-provision resources as needed to meet processing and storage demand, and organization’s ability to measure cloud computing resource use for internal and external accounting mark a major change in how an organization budgets ICT.

As cloud computing matures, each organization entering a technology refresh cycle must ask the question “are we in the technology business, or should we concentrate our efforts and budget in efforts directly supporting realizing objectives?”  If the answer is the latter, then any organization should evaluate outsourcing their ICT infrastructure to an internal or commercial cloud service provider.

It should be noted that today most cloud computing IaaS service platforms will not support migration of mainframe applications, such as those written for a RISC processor.  Those application require redevelopment to operate within an Intel-compatible processing environment.

Broadband Factor

Cloud computing components are currently implemented over an Internet Protocol network.  Users accessing SaaS application will need to have network access to connect with applications and data.  Depending on the amount of graphics information transmitted from the host to an individual user access terminal, poor bandwidth or lack of broadband could result in an unsatisfactory experience.

In addition, BCDR requires the transfer of potentially large amounts of data between primary and backup locations. Depending on the data parsing plan, whether mirroring data, partial backups, full backups, or live load balancing, data transfer between sites could be restricted if sufficient bandwidth is not available between sites.

Cloud computing is dependent on broadband as a means of connecting users to resources, and data transfer between sites.  Any organization considering implementing cloud computing outside of an organization local area network will need to fully understand what shortfalls or limitations may result in the cloud implementation not meeting objectives.

The Service-Oriented Cloud Computing Infrastructure (SOCCI)

Governments and other organizations are entering a technology refresh cycle based on existing ICT hardware and software infrastructure hitting the end of life.  In addition, as the world aggressively continues to break down national and technical borders, the need for organizations to reconsider the creation, use, and management of data supporting both mission critical business processes, as well as decision support systems will drive change.

Given the clear direction industry is taking to embrace cloud computing services, as well as the awareness existing siloed data structures within many organizations would better serve the organization in a service-oriented  framework, it makes sense to consider an integrated approach.

A SOCCI considers both, adding reference models and frameworks which will also add enterprise architecture models such as TOGAF to ultimately provide a broad, mature framework to support business managers and IT managers in their technology and business refresh planning process.

SOCCIs promote the use of architectural building blocks, publication of external interfaces for each application or data source developed, single source data, reuse of data and standardized application building block, as well as development and use of enterprise service buses to promote further integration and interoperability of data.

A SOCCI will look at elements of cloud computing, such as virtualized and on-demand compute/storage resources, and access to broadband communications – including security, encryption, switching, routing, and access as a utility.  The utility is always available to the organization for use and exploitation.  Higher level cloud components including PaaS and SaaS add value, in addition to higher level entry points to develop the ICT tools needed to meet the overall enterprise architecture and service-orientation needed to meet organizational needs.

According to the Open Group a SOCCI framework provides the foundation for connecting a service-oriented infrastructure with the utility of cloud computing.  As enterprise architecture and interoperability frameworks continue to gain in value and importance to organizations, this framework will provide additional leverage to make best use of available ICT tools.

The Bottom Line on ICT Modernization

The Internet Has reached nearly every point in the world, providing a global community functioning within an always available, real-time communications infrastructure.  University and primary school graduates are entering the workforce with social media, SaaS, collaboration, and location transparent peer communities diffused in their tacit knowledge and experience.

This environment has greatly flattened any leverage formerly developed countries, or large monopoly companies have enjoyed during the past several technology and market cycles.

An organization based on non-interoperable or standardized data, and no BCDR protection will certainly risk losing a competitive edge in a world being created by technology and data aware challengers.

Given the urgency organizations face to address data security, continuity of operations, agility to respond to market conditions, and operational costs associated with traditional ICT infrastructure, many are looking to emerging technology frameworks such as cloud computing to provide a model for planning solutions to those challenges.

Cloud computing and enterprise architecture frameworks provide guidance and a set of tools to assist organizations in providing structure, and infrastructure needed to accomplish ICT modernization objectives.

%d bloggers like this: